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I. MATHEMATICAL INTRODUCTION
In order to discuss concisely the progress of research during this
reporting period, the basic formulation of the MFE method in 2-0 is

presented immediately below.

Consider a general system of PDE's, U = L(U), or

lil L1(u)

uy = Ly(U) (1)

= J
Using piecewise linear approximants of Ug § akj(t) . ak¥(x, y)

on a hexagonally connected triangular mesh (see Figure 1), application of
the chain rule to the differentiation of ug gives

U, = 7 ak,ukd + x.gkd + y.vk? |, where (2)
k j oI j J
. al . au . U
J . k J_ Tk i _ Yk
akd = o 5k = K ) s K (3)
wak . IX . ay.
«d j )XJ )_yJ

The functions ukj, Bki, and ukj are basis functions at each node, j,
corresponding to the effect on the piecewise linear functions ug by the N
+ 2 parameters akj, Xj, and yj. It can be shown readily by taking
tiny increments in akj, or xj, Or yj that all three basis functions
w, i and y are piecewise linear functions having their support in the
hexagon of six triangles surrounding the jth node. It turns out that
ak? i independent of k; it is continuous and takes on the value 1 at the
center of the hexagon and 0 at the other nodes. The functions By and A
are discontinuous at the center and on the inner edges of the hexagon; they
vanish identically on the outer edges of the hexagon.

Ordinary differential equations (ODE's) are derived for the parameters
of the MFE method by requiring that the parameter derivatives {élj, ...éNj, ij, 9j}
are evaluated at each instant so as to formally minimize the LZ norm of
the POE residuals, 0 - L(U), plus regularization terms. The variational
equations for this minimization yield the following system of ODE's:




EXACT SOLUTION SURFACE
U= F(XY)

\{(
FIGURE 1-A. EXACT SOLUTION SURFACE, WITH LINES OF
CONSTANT X AND CONSTANT Y,
U* !
A
APPROXIMATION SURFACE
u* = F(XY)
/X
\{<

FIGURE 1-B., APPROXIMATE SOLUTION REPRESENTED BY
PIECEWISE LINEAR FUNCTIONS MAKING uP

HEXAGONALLY CONNECTED TRIANGULAR FACETS.

MFE UNKNOWNS ARE {alj,....aNj, x5, y5!

S+ Y
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(I, ui)ékj bk, a)x. + (yKI, o)y, = (L (U), «') for k=1, ... N,  (4a)

j J J
N . — P
vn (uJ, sk )ak; + (wa, sk )xs + (ykY, gk)y.
- ; J J J
k=1 j
N i
=y (Lk(U), gk') + (regularization terms) (4b)
k=1
N J 1. J 1. J T,
con(u?, vk )ak, + (BkY, vk )x: + (vkY, vk)y.
=1 3 J J J
k=1 J
N i
= 3 (Lk(U), vk') + (regularization terms) (4c)
k=1

The sums on j in Eqns. (4) run over the seven neighboring nodes of
i (including the ith node itself)in the hexagonal grid. Equations (4) thus
provide the basic working equations of the MFE method in 2-D. This system
of ODE's is written for purposes of numerical solution in the form

Cly)y - 9(y) =0, (5)

where y(t) = (aly, ..., x1, ¥15 al2, .oy X2, ¥25 «vvrnnn. ) is

the vector of unknown parameters, and the "mass matrix" C(y) is symmetric
and positive definite. This system of ODE's can be extremely stiff, and
such stiff ODE solvers as the Gear method and an implicit Runge-Kutta method
are used for the numerical solutions of Equations (4) and (5).

Obviously, the evaluation of the numerous inner product terms in Egns.
(4) is tedious, and the overall organization of an efficient code structure
for the general solution of Egns. (4) and (5) in 2-D is quite exacting.
These are the major tasks which have been performed during this reporting
period and which will be sumnarized and discussed further below.
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RESEARCH PROGRESS

The overall ob' ~“tive of this research is to explore the promise of the
cont inuous node moving properties in 2-D of the MFE method (a new numerical
PDE solution method) for the effective solution of problems with extremely
large, but finite, gradients. Such problems arise in numerous scientific
and engineering applications which dare of interest to the U.S. Air Force.
Accordingly, this research necessarily involves both fundamental analysis of
the nunerical method, itself, and reduction to practice of the MFE method
in order to carry out the essential scientific testing and advancement of
the basic method in higher dimensions.

Problems which can be written in conservation form as

ug = -c1.fx - €29y + c3.(ugx * uyy) (6)

are being investigated in the current stages of research. The immediate
objective of this first year's research is to develop a working MFE code in
2-D which can solve such simple equations as the heat egquation, a single
travelling wave, and Burger's equations, in order to study at an early date
the basic node moving properties of the MFE method in 2-D. (All of these
simple equations are obtained by appropriate choices of coefficients Cl»
c2, and c3 and functions f, and g, in Eqn. (6).) The first working

code version is nearly operational at this time. Table 1 presents a brief
summary of the status of essential tasks conducted in this research.

DISCUSSION ANU AUDITIONAL INFORMATION

The work during this reporting period has been heavily devoted to code
development and analysis of the logical structure of the MFE method in two
dimensions. As a result of these efforts, significant computational
economies have been realized for both unvectorized versions of the method
as it currently exists and, more importantly, for vectorized versions which
will undoubtedly emerge in later efforts.

-4-




TABLE 1 - SUMMARY OF PROGRESS

Basis Functions

MILESTONE: Using piecewise linear
basis functions, develop inner
products of the operators in Egn.
(6) by numerical integration.

Regularization

MILESTONE: Develop penalty functions
which prevent grid mesh tangling for
the MFE nodes.

Grid Mesh Generation

MILESTONE: Assess automatic grid
mesh generators for compatibility
with the data structures in the
MFE metheod.

Matrix Solution

MILESTONES:

(a) Apply existing direct factori-
zation methods.

(b) L-U decomposition of banded
matrix.

{c) Point and line relaxation methods.

{(d) Alternating Direction Implicit
(ADI).

Boundary Conditions

MILESTONES:

(a) Stationary Dirichlet and zero-
Neumann conditions.

(b) Time-dependent Dirichlet
conditions.

(c) Non-zero Neumann and mixed
boundary conditions.

STATUS: Completed. Some operators
in gas dynamics equations have also
been evaluated, coded, and tested.

Both simple and composite Simpson's
(Newton-Cotes) methods are used on

triangle edge (line) integrations.

Both simple and composite midpoint

rules are used for integrations on

triangle areas.

STATUS: Completed.

STATUS: Scoping completed.
STATUS: Completed.

STATUS: Completed.

STATUS: Completed.

STATUS: Two-directional ADI
completed. Oynamic ADl in three

directions warrants additional
research, as do efficient iterative
matrix solution methods.

STATUS: Completed.
STATUS: Completed.
STATUS: Barely started.




The nature of these economies are illustrated, for example, by the
structure of equations (4) above which are written on a node-by-node basis
(via the summations over j on nodes). Although compact for purposes of
theoretical derivations and expositions, this node-by-node ordering of
operations turns out not to provide the most efficient architecture for MFE
computations of those PDE operators which appear in Eqn. (6). Alternatively,
the structure of the MFE method and the topology of hexagonally connected
triangular basis functions lend themselves to both logical and practical
computational economies when the method is executed on a triangle-by-
triangle basis. This alternative course is the one which is being
implemented in the present work.

In scoping studies of grid mesh generation methods, it has become
evident that hexagonally connected triangular mesh generation methods are
basically compatible with the MFE method. The logical structure and mode of
PDE solution execution by the MFE method again contributes to this conclu-
sion. S0 long as the MFE method continues to exhibit robustness in its
continuous node movement properties, the use of grid mesh generation
rout ines would be required only for problem initializations. All solution
regridding subsequent to initialization is continuously performed, in
effect, by the MFE method itself based upon its own stringent minimization
criteria. It is, in fact, preferable to not introduce a generically
different mesh generation method on an in-line basis into the transient MFE
solutions. This anticipated restriction to problem initializations reduces
greatly the role and the demands upon other mesh generation methods which
would be used in conjunction with the MFE method. In those problems which
may require some infrequent remapping of MFE solutions in order to reach
final solutions, one would undoubtedly choose to interrupt the MFE solution,
regrid the numerical PDE solution data at that stage, and then proceed again
with the MFE solution as a new initial-value problem. For this type of
procedure, the MFE method would be viewed as the dynamic mesh generation
procedure and the alternative mesh generation method would be viewed as the
static initialization procedure. It thus appears that if any revisions at
all are required, it would be only minor alterations of mesh incexing and
of triangle orientations which may be needed in some of the available
triangular mesh generation packages in order to serve effectively as an
initialization method for MFE solutions. Further work in this area of mesh
generation for initialization will be taken up again in later stages of

research when more complex applications are considered.
-6-
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Matrix solution methods for the large, banded, stiff system of ML
equations have been tested extensively during this reporting period. The
results of this testing indicate that L - U decomposition of the banded
matrix of the MFE method is a reasonable choice for this early stage of
research where inmediacy, reliability, and ease of implementation outweigh
computational efficiency in simall test problem applications. (In later
stages of research it will be necessary to implement more efficient matrix
solution methods for larger and/or more complex PDE systems, as will be
indicated in the discussion below.) Point and line relaxation methods have
also been tested during this reporting period and found to converge too
slowly to be useful in current MFE research. Two-directional ADI methods
were similarly tested and were found to be well-suited for implementation
with the MFE method on a quadrilateral grid. For the hexagonally connected

triangular mesh which is used in the present effort, three-directional (in
contrast to two-directional) ADI methods will be required. Although a large
amount of additional research is needed before three-directional ADI can be
used effectively with the MFE method, dynanic ADI methods are sufficiently

promising that such further research certainly appears to be warranted for
large-scale MFE applications in the future. Indeed, dynamic ADI and perhaps
other splitting methods presently appear to be mandatory in order to achieve
desired economies when large-scale applications are considered. In antici-
pation of these later matrix solution needs, the investigation of more
efficient interative solution methods has also been started. At this time,
partial block Gauss elimination and incomplete orthogonalization of a
conjugate gradient solution method are in the early scoping stages and are
showing some signs of promise.

No major deviations from the planned course of research have been made
during this reporting period and none are anticipated during the next

reporting period. S0 far as maintaining an alert for potential problems
which may arise, the adequacy of numerical Jacobians is under constant
surveillance. Testing during the present period indicates that essential
levels of computational accuracy in Jacobian evaluations are likely to be
maintained by the numerical discretization methods which are used in current
code versions. Constant monitoring of this portion of MFE calculations is
warranted because such a large and tedious coding effort of analytic
Jacobian expressions would be required in the event that numerical Jacobian
evaluations were found to be inadequate. 7
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